Posts

Rhode Island Renews Funding for Solar Farms on Brownfields

Good News For Rhode Island Solar! 

This week has brought some good news for Rhode Island solar: The Rhode Island Commerce’s Renewable Energy Fund has renewed its funding incentives for solar projects on brownfields. Brownfields are contaminated or polluted sites. They are often old industrial parks or commercial areas. This incentive funds solar developers and encourages them to build solar farms on brownfields. The state allocated another $1 million to the initiative because it saw so much success in 2019 and 2020.

It can take a lot of time and resources to decontaminate a brownfield and make it safe enough to be redeveloped. So, turning brownfields into solar farms is a safe and effective use of this contaminated land. Additionally, since Rhode Island is such a small state, using brownfields are a perfect way to install more solar power without cutting down trees or damaging any other environments. This initiative will help Rhode Island reach its goal of reaching net zero by 2050!

 

Colby’s 5,300-Panel Solar Field Ready to Generate Power – and Academic Opportunity

By Caitlin Rogers

July 6, 2017

Read the original article Here

Colby will flip the switch on a nine-acre solar field this fall, the latest step in the College’s commitment to sustainable and climate-friendly practices. The new 1.9-megawatt photovoltaic energy project, announced last May, will supply about 16 percent of the College’s electricity.

Colby declared carbon neutrality in 2013 and continues to work to reduce carbon emissions.

“Colby takes a holistic approach,” said Mina Amundsen, assistant vice president for facilities and campus planning. “We are always looking for the next way to promote sustainable practices.”

The project, undertaken in collaboration with NRG Energy, Inc., is located less than one mile from campus on a large, easily accessible, south-facing space to maximize the project’s capacity for power production. Approximately 5,300 solar panels will be installed to produce 2.5 million kilowatt hours of electricity per year.

This solar array is the latest in a series of sustainable energy projects implemented by the College. Colby already has a photovoltaic energy system on the roof of the Schair-Swenson-Watson Alumni Center that generates around 10 percent of its electricity from a steam plant on campus.

The biomass plant, booted up in 2012, saves a million gallons of oil annually by burning locally sourced forestry scraps to produce heat. Additionally, 15 of Colby’s spaces are LEED certified, and Colby is committed to seeking LEED certification—which indicates commitment to human and environmental health in its design and construction—on all new building projects.

Amundsen said Colby’s commitment to the environment includes not only sustainable energy, but also sustainable water, materials, waste, and consumption. Colby was only the fourth college or university in the country to become carbon neutral when it reached that milestone about two years ahead of schedule.

For more than a decade, Colby students have intensively studied environmental practices on campus and participated in sustainability projects; the campus’ first greenhouse gas inventory became an honors thesis in 2007.

The solar array provides another valuable learning opportunity for students, who will be able to study the system itself and the environment around it.

China Turns On The World’s Largest Floating Solar Farm

By Jason Daley

June 7 2017

Read the original article Here

Last week, workers switched on a solar energy plant capable of producing 40 megawatts of power, which floats on a manmade lake in China’s Anhui province near the city of Huainan, reports Sarah Zheng at the South China Morning Post. The array is the largest floating solar project in the world, though at the brisk pace China is building new renewable projects it’s unlikely to hold that title very long.

Built by the company Sungrow Power Supply, the power plant will produce enough energy to power 15,000 homes, Zheng reports. While the company has not revealed the exact size of the operation, it produces twice as much energy as the previous holder of the largest-floating-solar-plant title, which is located in the same area and was launched by the company Xinyi Solar in 2016.

Anhui province is a coal-rich region, and the Sungrow plant is located on a lake that was once the site of intensive mining. Heavy rains filled the area with water. As Zhen reports, the depth of the lake varies from 12 feet to 30 feet.

So why build solar plants on top of lakes and reservoirs? Fiona Harvey at The Guardian explains that building on bodies of water, especially manmade lakes that are not ecologically sensitive, helps protect agricultural land and terrestrial ecosystems from being developed for energy use. The water also cools the electronics in the solar panels, helping them to work more efficiently, reports Alistair Boyle for The Telegraph. For similar reasons Britain built a 23,000-panel floating solar farm on the Queen Elizabeth II reservoir near Heathrow airport in 2016 to help power the Thames Water treatment plant.

The Sungrow solar farm is just one tiny piece in China’s push towards renewable energy. According to Irina Slav at Business Insider, the country recently announced it would invest $361 billion in renewable power by 2020, and by 2022 could produce 320 gigawatts of wind and solar power and 340 gigawatts of hydropower. Zheng reports that currently renewables are responsible for 11 percent of China’s energy and may reach 20 percent by 2030.

While the floating solar plant is the largest in the world, it pales in comparison to some of China’s non-floating solar projects. The Longyangxia Dam Solar Park on the Tibetan plateau hosts 4 million solar panels that produce 850 megawatts of energy. Even that will soon be eclipsed by a project in the Ningxia Autonomous Region, which will have 6 million solar panels and produce 2 gigawatts of power.